Shuvit game master repo. http://shuvit.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

StatesCar.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. import utils
  2. import bge
  3. import random
  4. from mathutils import Vector
  5. #====================================
  6. def mark_path(path, y):
  7. iter_ = 0
  8. for x in path:
  9. pm = bge.logic.getCurrentScene().addObject('path_marker', y.obj, 0)
  10. pm.worldPosition = path[iter_]
  11. iter_ += 1
  12. if iter_ == 1:
  13. pm.color = [0,1,0,.4]
  14. if iter_ == (len(path) ):
  15. pm.color = [1,0,0,.4]
  16. if iter_ == (len(path) +1):
  17. pm.color = [1,0,1,.4]
  18. y.path_display.append(pm)
  19. def clear_markers(self):
  20. for x in self.FSM.owner.path_display:
  21. try:
  22. x.endObject()
  23. except:
  24. pass
  25. def get_ground_ray(self):
  26. Axis = 2
  27. Distance = -10
  28. end = self.obj.worldPosition + (self.obj.worldOrientation.col[Axis]*Distance)
  29. start = self.obj.worldPosition.copy()
  30. ground_ray = self.obj.rayCast(end, start, 6,'', 1, 0)
  31. return ground_ray
  32. def set_height(self):
  33. ground_ray = get_ground_ray(self)
  34. target_height = 0.9
  35. hitpoint = ground_ray[1]
  36. try:
  37. dist = self.obj.getDistanceTo(hitpoint)
  38. if dist < target_height:
  39. self.obj.worldPosition.z += target_height - dist
  40. self.obj.linearVelocity.z = 0
  41. self.obj.linearVelocity.y *= .1
  42. except:
  43. pass
  44. def align_to_road(self):
  45. ground_ray = get_ground_ray(self)
  46. try:
  47. self.obj.alignAxisToVect(ground_ray[2], 2, .15)
  48. except:
  49. pass
  50. def find_new_parking(self):
  51. potentials = []
  52. for x in self.manager.parking_spots:
  53. if x.status == 'available':
  54. potentials.append(x)
  55. for x in potentials:
  56. min_dist = 100
  57. dist = self.obj.getDistanceTo(x.obj)
  58. if dist < min_dist:
  59. potentials.remove(x)
  60. print('----removing potential')
  61. if len(potentials) > 0:
  62. new_parking = random.choice(potentials)
  63. path = self.manager.navmesh.findPath(self.start_empty.obj.worldPosition, new_parking.obj.worldPosition)
  64. print('parking added at', new_parking.obj.worldPosition)
  65. mark_path(path, self)
  66. return new_parking, path
  67. else:
  68. print('cant find parking for', self)
  69. self.FSM.FSM.ToTransition('toEnterParallelPark')
  70. def get_lane_point(self):
  71. self.point = self.path[self.path_index]
  72. if self.point != self.last_lane_point:
  73. v = Vector([self.last_lane_point.x - self.point.x, self.last_lane_point.y - self.point.y, 0])
  74. tv = v.normalized()
  75. nv = Vector([-tv.y, tv.x, 0]) #rotate 90 degrees
  76. self.last_lane_point = self.lane_point
  77. self.lane_point = self.point + self.manager.lane_position * nv
  78. def update_point(self):
  79. if self.path_index >= (len(self.path) ):
  80. self.FSM.FSM.ToTransition('toEnterParallelPark')
  81. else:
  82. dist = self.obj.getDistanceTo(self.lane_point)
  83. self.point = self.path[self.path_index]
  84. if dist < 2.5:
  85. get_lane_point(self)
  86. if self.path_index > (len(self.path)):
  87. pass
  88. else:
  89. self.path_index += 1
  90. def align_to_point(self):
  91. v = self.obj.getVectTo(self.lane_point)[1]
  92. v.z = 0
  93. self.obj.alignAxisToVect(v, 0, .1)
  94. def delta_to_vect(self):
  95. v = self.obj.getVectTo(self.lane_point)[1]
  96. delta = self.last_lane_point - self.lane_point
  97. delta = delta.cross(v)
  98. delta_mult = -.1
  99. mult = 1.0
  100. deltamove = delta[2] * delta_mult
  101. f = deltamove * 5000
  102. self.obj.applyForce([0, f, 0], True)
  103. def apply_gas(self):
  104. if self.obj.linearVelocity.x < self.speed_targ:
  105. self.obj.applyForce([self.speed_inc, 0, 0], True)
  106. #====================================
  107. State = type("State", (object,), {})
  108. #====================================
  109. class State(object):
  110. def __init__(self, FSM):
  111. self.FSM = FSM
  112. self.timer = 0
  113. self.startTime = 0
  114. def Enter(self):
  115. self.timer = 0
  116. self.startTime = 0
  117. def Execute(self):
  118. print('Executing')
  119. def Exit(self):
  120. print('Exiting')
  121. #====================================
  122. class Example(State):
  123. def __init__(self,FSM):
  124. super(Example, self).__init__(FSM)
  125. def Enter(self):
  126. self.FSM.stateLife = 1
  127. self.FSM.owner.resumePhysics()
  128. self.FSM.owner.resumeDynamics()
  129. print('physics resumed')
  130. super(Example, self).Enter()
  131. def Execute(self):
  132. self.FSM.stateLife += 1
  133. print('doing example')
  134. def Exit(self):
  135. pass
  136. class ExitParallelPark(State):
  137. def __init__(self,FSM):
  138. super(ExitParallelPark, self).__init__(FSM)
  139. def Enter(self):
  140. self.FSM.stateLife = 1
  141. self.FSM.owner.obj.restorePhysics()
  142. self.FSM.owner.obj.restoreDynamics()
  143. self.FSM.owner.obj.linearVelocity = [0,0,0]
  144. self.FSM.owner.target, self.FSM.owner.path = find_new_parking(self.FSM.owner)
  145. self.FSM.owner.path_index = 0
  146. self.FSM.owner.point = self.FSM.owner.path[self.FSM.owner.path_index]
  147. self.FSM.owner.target.status = 'targetted'
  148. self.FSM.owner.start_empty.status = 'available'
  149. print('physics resumed')
  150. super(ExitParallelPark, self).Enter()
  151. def Execute(self):
  152. self.FSM.stateLife += 1
  153. v = self.FSM.owner.obj.getVectTo(self.FSM.owner.path[0])
  154. self.FSM.owner.obj.alignAxisToVect(v[1], 0, .01)
  155. self.FSM.owner.obj.alignAxisToVect([0,0,1], 2, 1)
  156. if self.FSM.stateLife > 220:
  157. self.FSM.ToTransition('toNavigateToTarget')
  158. def Exit(self):
  159. pass
  160. #====================================
  161. class EnterParallelPark(State):
  162. def __init__(self,FSM):
  163. super(EnterParallelPark, self).__init__(FSM)
  164. def Enter(self):
  165. self.FSM.stateLife = 1
  166. print('entering parallel park')
  167. self.FSM.owner.obj.worldPosition = self.FSM.owner.target.obj.worldPosition
  168. self.FSM.owner.obj.worldOrientation = self.FSM.owner.target.obj.worldOrientation
  169. self.FSM.owner.obj.applyMovement([0, -6, 0], True)
  170. self.FSM.owner.target.status = 'in_use'
  171. self.FSM.owner.obj.worldPosition.z += .9
  172. self.FSM.owner.active = False
  173. self.FSM.owner.start_empty = self.FSM.owner.target
  174. self.FSM.owner.last_point = self.FSM.owner.target.obj.worldPosition.copy()
  175. self.FSM.owner.last__lane_point = self.FSM.owner.obj.worldPosition
  176. self.FSM.owner.point = self.FSM.owner.target.obj.worldPosition.copy()
  177. clear_markers(self)
  178. self.FSM.owner.obj.suspendDynamics()
  179. self.FSM.owner.obj.suspendPhysics()
  180. super(EnterParallelPark, self).Enter()
  181. def Execute(self):
  182. self.FSM.stateLife += 1
  183. if self.FSM.stateLife == 2:
  184. self.FSM.owner.manager.cars_active.remove(self.FSM.owner)
  185. def Exit(self):
  186. pass
  187. #====================================
  188. class NavigateToTarget(State):
  189. def __init__(self,FSM):
  190. super(NavigateToTarget, self).__init__(FSM)
  191. def Enter(self):
  192. self.FSM.stateLife = 1
  193. super(NavigateToTarget, self).Enter()
  194. def Execute(self):
  195. self.FSM.stateLife += 1
  196. update_point(self.FSM.owner)
  197. align_to_point(self.FSM.owner)
  198. align_to_road(self.FSM.owner)
  199. set_height(self.FSM.owner)
  200. delta_to_vect(self.FSM.owner)
  201. apply_gas(self.FSM.owner)
  202. #emergency exit
  203. if self.FSM.stateLife > 30 * 60:
  204. self.FSM.ToTransition('toEnterParallelPark')
  205. def Exit(self):
  206. pass
  207. #====================================
  208. class Activate(State):
  209. def __init__(self,FSM):
  210. super(Activate, self).__init__(FSM)
  211. def Enter(self):
  212. self.FSM.stateLife = 1
  213. super(Activate, self).Enter()
  214. def find_target(self):
  215. pass
  216. def drive_to_point(self):
  217. if self.FSM.path:
  218. ground_ray = get_ground_ray(self)
  219. if ground_ray[0]:
  220. set_height(self, ground_ray)
  221. align_to_road(self, ground_ray)
  222. v = self.FSM.owner.getVectTo(self.lane_point)
  223. speed_force = 800.0
  224. max_speed = 5.0
  225. behind = False
  226. local = self.FSM.owner.worldOrientation.inverted() * (self.lane_point - self.FSM.owner.worldPosition)
  227. v2 = v[1].copy()
  228. v2.z = 0
  229. delta = self.last_lane_point - self.lane_point
  230. delta = delta.cross(v[1])
  231. delta_mult = -.1
  232. mult = 1.0
  233. backup_time = 20
  234. #change max speed
  235. if self.FSM.stateLife % 180 == 0:
  236. print('change speed force')
  237. self.speed_force = random.choice([max_speed * 1.3, max_speed * 1.6, max_speed * .8, max_speed * .6, max_speed])
  238. if local.x > 0 and self.backup == 0:
  239. if self.FSM.owner.linearVelocity.x < self.max_speed:
  240. self.FSM.owner.applyForce([speed_force, 0, 0], True)
  241. deltamove = delta[2] * delta_mult
  242. #self.FSM.owner.applyMovement([0, deltamove, 0], True)
  243. f = deltamove * 5000
  244. self.FSM.owner.applyForce([0, f, 0], True)
  245. v = self.FSM.owner.getVectTo(self.lane_point)
  246. v2 = v[1].copy()
  247. v2.z = 0
  248. self.FSM.owner.alignAxisToVect(v2, 0, .05)
  249. else:
  250. if local.x < 0:
  251. self.backup = backup_time
  252. if self.backup > 0:
  253. print('backing up')
  254. v = self.FSM.owner.getVectTo(self.FSM.path[0])
  255. v2 = v[1].copy()
  256. v2.z = 0
  257. self.FSM.owner.alignAxisToVect(v2, 0, .02)
  258. if self.FSM.owner.linearVelocity.x > -max_speed / 2:
  259. self.FSM.owner.applyForce([-speed_force * .8, 0, 0], True)
  260. self.backup -= 1
  261. dist = self.FSM.owner.getDistanceTo(self.lane_point)
  262. if dist < 2.5 and (len(self.FSM.path) > 0):
  263. #print(self.FSM.path,'this is the path')
  264. #print('navmesh point removed')
  265. self.last_point = self.point
  266. self.last_lane_point = self.lane_point
  267. self.FSM.path.remove(self.FSM.path[0])
  268. if len(self.FSM.path) > 0:
  269. self.point = self.FSM.path[0]
  270. v = Vector([self.last_point.x - self.point.x, self.last_point.y - self.point.y, 0])
  271. tv = v.normalized()
  272. nv = Vector([-tv.y, tv.x, 0]) #rotate 90 degrees
  273. self.lane_point = self.point + self.lane_position * nv
  274. else:
  275. self.point = None
  276. if self.FSM.path == []:
  277. self.FSM.curTarget = None
  278. #progress
  279. self.pos_his.append(self.FSM.owner.worldPosition.copy())
  280. pos_his_len = len(self.pos_his)
  281. if pos_his_len > 200:
  282. sum_ = abs(self.FSM.owner.worldPosition.x - self.pos_his[0][0]) + abs(self.FSM.owner.worldPosition.y - self.pos_his[0][1])
  283. #print(sum_, 'sum')
  284. if sum_ < .05:
  285. self.backup = backup_time
  286. print('progress stopped')
  287. del self.pos_his[0]
  288. def Execute(self):
  289. self.FSM.stateLife += 1
  290. def Exit(self):
  291. pass
  292. #====================================