Shuvit game master repo. http://shuvit.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

StatesCar.py 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. import utils
  2. import bge
  3. import random
  4. from mathutils import Vector
  5. #====================================
  6. def mark_path(path, y):
  7. iter_ = 0
  8. for x in path:
  9. pm = bge.logic.getCurrentScene().addObject('path_marker', y.obj, 0)
  10. pm.worldPosition = path[iter_]
  11. iter_ += 1
  12. if iter_ == 1:
  13. pm.color = [0,1,0,.4]
  14. if iter_ == (len(path) ):
  15. pm.color = [1,0,0,.4]
  16. if iter_ == (len(path) +1):
  17. pm.color = [1,0,1,.4]
  18. y.path_display.append(pm)
  19. def clear_markers(self):
  20. for x in self.FSM.owner.path_display:
  21. try:
  22. x.endObject()
  23. except:
  24. pass
  25. def get_ground_ray(self):
  26. Axis = 2
  27. Distance = -10
  28. end = self.obj.worldPosition + (self.obj.worldOrientation.col[Axis]*Distance)
  29. start = self.obj.worldPosition.copy()
  30. ground_ray = self.obj.rayCast(end, start, 6,'', 1, 0)
  31. return ground_ray
  32. def set_height(self):
  33. ground_ray = get_ground_ray(self)
  34. target_height = 0.9
  35. hitpoint = ground_ray[1]
  36. try:
  37. dist = self.obj.getDistanceTo(hitpoint)
  38. if dist < target_height:
  39. self.obj.worldPosition.z += target_height - dist
  40. self.obj.linearVelocity.z = 0
  41. self.obj.linearVelocity.y *= .1
  42. except:
  43. pass
  44. def align_to_road(self):
  45. ground_ray = get_ground_ray(self)
  46. try:
  47. self.obj.alignAxisToVect(ground_ray[2], 2, .15)
  48. except:
  49. pass
  50. def find_new_parking(self):
  51. potentials = []
  52. for x in self.manager.parking_spots:
  53. if x.status == 'available':
  54. potentials.append(x)
  55. for x in potentials:
  56. min_dist = 100
  57. dist = self.obj.getDistanceTo(x.obj)
  58. if dist < min_dist:
  59. #potentials.remove(x)
  60. print('----removing potential')
  61. if len(potentials) > 0:
  62. new_parking = random.choice(potentials)
  63. path = self.manager.navmesh.findPath(self.start_empty.obj.worldPosition, new_parking.obj.worldPosition)
  64. print('parking added at', new_parking.obj.worldPosition)
  65. mark_path(path, self)
  66. return new_parking, path
  67. else:
  68. print('cant find parking for', self)
  69. self.FSM.FSM.ToTransition('toEnterParallelPark')
  70. def get_lane_point(self):
  71. self.point = self.path[self.path_index]
  72. if self.point != self.last_lane_point:
  73. v = Vector([self.last_lane_point.x - self.point.x, self.last_lane_point.y - self.point.y, 0])
  74. tv = v.normalized()
  75. nv = Vector([-tv.y, tv.x, 0]) #rotate 90 degrees
  76. self.last_lane_point = self.lane_point
  77. self.lane_point = self.point + self.manager.lane_position * nv
  78. else:
  79. print('skipping lane point')
  80. def update_point(self):
  81. print(self.path_index, 'path index', len(self.path))
  82. if self.path_index >= (len(self.path) ):
  83. self.FSM.FSM.ToTransition('toEnterParallelPark')
  84. else:
  85. dist = self.obj.getDistanceTo(self.lane_point)
  86. self.point = self.path[self.path_index]
  87. if dist < 2.5:
  88. get_lane_point(self)
  89. if self.path_index > (len(self.path)):
  90. pass
  91. else:
  92. self.path_index += 1
  93. def align_to_point(self):
  94. v = self.obj.getVectTo(self.lane_point)[1]
  95. v.z = 0
  96. self.obj.alignAxisToVect(v, 0, .1)
  97. def delta_to_vect(self):
  98. v = self.obj.getVectTo(self.lane_point)[1]
  99. delta = self.last_lane_point - self.lane_point
  100. delta = delta.cross(v)
  101. delta_mult = -.1
  102. mult = 1.0
  103. deltamove = delta[2] * delta_mult
  104. #check if in front
  105. local = self.obj.worldOrientation.inverted() * (self.lane_point - self.obj.worldPosition)
  106. f = deltamove * 50
  107. if local < 0:
  108. f *= -1
  109. self.obj.applyForce([0, f, 0], True)
  110. def apply_gas(self):
  111. if self.obj.linearVelocity.x < self.speed_targ:
  112. self.obj.applyForce([self.speed_inc, 0, 0], True)
  113. #====================================
  114. State = type("State", (object,), {})
  115. #====================================
  116. class State(object):
  117. def __init__(self, FSM):
  118. self.FSM = FSM
  119. self.timer = 0
  120. self.startTime = 0
  121. def Enter(self):
  122. self.timer = 0
  123. self.startTime = 0
  124. def Execute(self):
  125. print('Executing')
  126. def Exit(self):
  127. print('Exiting')
  128. #====================================
  129. class Example(State):
  130. def __init__(self,FSM):
  131. super(Example, self).__init__(FSM)
  132. def Enter(self):
  133. self.FSM.stateLife = 1
  134. self.FSM.owner.resumePhysics()
  135. self.FSM.owner.resumeDynamics()
  136. print('physics resumed')
  137. super(Example, self).Enter()
  138. def Execute(self):
  139. self.FSM.stateLife += 1
  140. print('doing example')
  141. def Exit(self):
  142. pass
  143. class ExitParallelPark(State):
  144. def __init__(self,FSM):
  145. super(ExitParallelPark, self).__init__(FSM)
  146. def Enter(self):
  147. self.FSM.stateLife = 1
  148. self.FSM.owner.obj.restorePhysics()
  149. self.FSM.owner.obj.restoreDynamics()
  150. self.FSM.owner.obj.linearVelocity = [0,0,0]
  151. self.FSM.owner.target, self.FSM.owner.path = find_new_parking(self.FSM.owner)
  152. self.FSM.owner.path_index = 0
  153. self.FSM.owner.point = self.FSM.owner.path[self.FSM.owner.path_index]
  154. self.FSM.owner.target.status = 'targetted'
  155. self.FSM.owner.start_empty.status = 'available'
  156. print('physics resumed')
  157. super(ExitParallelPark, self).Enter()
  158. def Execute(self):
  159. self.FSM.stateLife += 1
  160. v = self.FSM.owner.obj.getVectTo(self.FSM.owner.path[0])
  161. self.FSM.owner.obj.alignAxisToVect(v[1], 0, .01)
  162. self.FSM.owner.obj.alignAxisToVect([0,0,1], 2, 1)
  163. if self.FSM.stateLife > 220:
  164. self.FSM.ToTransition('toNavigateToTarget')
  165. def Exit(self):
  166. pass
  167. #====================================
  168. class EnterParallelPark(State):
  169. def __init__(self,FSM):
  170. super(EnterParallelPark, self).__init__(FSM)
  171. def Enter(self):
  172. self.FSM.stateLife = 1
  173. print('entering parallel park')
  174. self.FSM.owner.obj.worldPosition = self.FSM.owner.target.obj.worldPosition.copy()
  175. self.FSM.owner.obj.worldOrientation = self.FSM.owner.target.obj.worldOrientation.copy()
  176. self.FSM.owner.obj.applyMovement([0, -6, 0], True)
  177. self.FSM.owner.target.status = 'in_use'
  178. self.FSM.owner.obj.worldPosition.z += .9
  179. self.FSM.owner.active = False
  180. self.FSM.owner.start_empty = self.FSM.owner.target
  181. self.FSM.owner.last_point = self.FSM.owner.target.obj.worldPosition.copy()
  182. self.FSM.owner.last_lane_point = self.FSM.owner.obj.worldPosition.copy()
  183. self.FSM.owner.point = self.FSM.owner.target.obj.worldPosition.copy()
  184. self.FSM.owner.path_index = 0
  185. self.FSM.owner.path = None
  186. print('clearning last path')
  187. clear_markers(self)
  188. self.FSM.owner.obj.suspendDynamics()
  189. self.FSM.owner.obj.suspendPhysics()
  190. super(EnterParallelPark, self).Enter()
  191. def Execute(self):
  192. self.FSM.stateLife += 1
  193. if self.FSM.stateLife == 2:
  194. self.FSM.owner.manager.cars_active.remove(self.FSM.owner)
  195. def Exit(self):
  196. pass
  197. #====================================
  198. class NavigateToTarget(State):
  199. def __init__(self,FSM):
  200. super(NavigateToTarget, self).__init__(FSM)
  201. def Enter(self):
  202. self.FSM.stateLife = 1
  203. super(NavigateToTarget, self).Enter()
  204. def Execute(self):
  205. self.FSM.stateLife += 1
  206. update_point(self.FSM.owner)
  207. align_to_point(self.FSM.owner)
  208. align_to_road(self.FSM.owner)
  209. set_height(self.FSM.owner)
  210. #delta_to_vect(self.FSM.owner)
  211. apply_gas(self.FSM.owner)
  212. #emergency exit
  213. if self.FSM.stateLife > 30 * 100:
  214. self.FSM.ToTransition('toEnterParallelPark')
  215. def Exit(self):
  216. pass
  217. #====================================
  218. class Activate(State):
  219. def __init__(self,FSM):
  220. super(Activate, self).__init__(FSM)
  221. def Enter(self):
  222. self.FSM.stateLife = 1
  223. super(Activate, self).Enter()
  224. def find_target(self):
  225. pass
  226. def drive_to_point(self):
  227. pass
  228. # if self.FSM.path:
  229. # ground_ray = get_ground_ray(self)
  230. # if ground_ray[0]:
  231. # set_height(self, ground_ray)
  232. # align_to_road(self, ground_ray)
  233. # v = self.FSM.owner.getVectTo(self.lane_point)
  234. # speed_force = 800.0
  235. # max_speed = 5.0
  236. # behind = False
  237. # local = self.FSM.owner.worldOrientation.inverted() * (self.lane_point - self.FSM.owner.worldPosition)
  238. # v2 = v[1].copy()
  239. # v2.z = 0
  240. # delta = self.last_lane_point - self.lane_point
  241. # delta = delta.cross(v[1])
  242. # delta_mult = -.1
  243. # mult = 1.0
  244. # backup_time = 20
  245. # #change max speed
  246. # if self.FSM.stateLife % 180 == 0:
  247. # print('change speed force')
  248. # self.speed_force = random.choice([max_speed * 1.3, max_speed * 1.6, max_speed * .8, max_speed * .6, max_speed])
  249. # if local.x > 0 and self.backup == 0:
  250. # if self.FSM.owner.linearVelocity.x < self.max_speed:
  251. # self.FSM.owner.applyForce([speed_force, 0, 0], True)
  252. # deltamove = delta[2] * delta_mult
  253. # #self.FSM.owner.applyMovement([0, deltamove, 0], True)
  254. # f = deltamove * 5000
  255. # self.FSM.owner.applyForce([0, f, 0], True)
  256. # v = self.FSM.owner.getVectTo(self.lane_point)
  257. # v2 = v[1].copy()
  258. # v2.z = 0
  259. # self.FSM.owner.alignAxisToVect(v2, 0, .05)
  260. # else:
  261. # if local.x < 0:
  262. # self.backup = backup_time
  263. # if self.backup > 0:
  264. # print('backing up')
  265. # v = self.FSM.owner.getVectTo(self.FSM.path[0])
  266. # v2 = v[1].copy()
  267. # v2.z = 0
  268. # self.FSM.owner.alignAxisToVect(v2, 0, .02)
  269. # if self.FSM.owner.linearVelocity.x > -max_speed / 2:
  270. # self.FSM.owner.applyForce([-speed_force * .8, 0, 0], True)
  271. # self.backup -= 1
  272. # dist = self.FSM.owner.getDistanceTo(self.lane_point)
  273. # if dist < 2.5 and (len(self.FSM.path) > 0):
  274. # #print(self.FSM.path,'this is the path')
  275. # #print('navmesh point removed')
  276. # self.last_point = self.point
  277. # self.last_lane_point = self.lane_point
  278. # self.FSM.path.remove(self.FSM.path[0])
  279. # if len(self.FSM.path) > 0:
  280. # self.point = self.FSM.path[0]
  281. # v = Vector([self.last_point.x - self.point.x, self.last_point.y - self.point.y, 0])
  282. # tv = v.normalized()
  283. # nv = Vector([-tv.y, tv.x, 0]) #rotate 90 degrees
  284. # self.lane_point = self.point + self.lane_position * nv
  285. # else:
  286. # self.point = None
  287. # if self.FSM.path == []:
  288. # self.FSM.curTarget = None
  289. # #progress
  290. # self.pos_his.append(self.FSM.owner.worldPosition.copy())
  291. # pos_his_len = len(self.pos_his)
  292. # if pos_his_len > 200:
  293. # sum_ = abs(self.FSM.owner.worldPosition.x - self.pos_his[0][0]) + abs(self.FSM.owner.worldPosition.y - self.pos_his[0][1])
  294. # #print(sum_, 'sum')
  295. # if sum_ < .05:
  296. # self.backup = backup_time
  297. # print('progress stopped')
  298. # del self.pos_his[0]
  299. def Execute(self):
  300. self.FSM.stateLife += 1
  301. def Exit(self):
  302. pass
  303. #====================================