uniform sampler2D skySampler; varying vec4 fragPos; //fragment coordinates varying vec3 wT, wB, wN; //tangent binormal normal //varying vec3 wPos, pos, viewPos, sunPos; varying vec3 wPos, pos, viewPos; uniform vec3 cameraPos; uniform float bias, lumamount, contrast; //varying float luminance; uniform float luminance; uniform float sunx; uniform float suny; uniform float sunz; vec3 sunPos = vec3(sunx, suny, sunz); //vec3 sunPos = (sunx,suny,sunz); vec3 sunDirection = normalize(sunPos); uniform float turbidity, reileigh; float reileighCoefficient = reileigh; const float mieCoefficient = 0.005; const float mieDirectionalG = 0.80; vec3 tangentSpace(vec3 v) { vec3 vec; vec.xy=v.xy; vec.z=sqrt(1.0-dot(vec.xy,vec.xy));; vec.xyz= normalize(vec.x*wT+vec.y*wB+vec.z*wN); return vec; } // constants for atmospheric scattering const float e = 2.71828182845904523536028747135266249775724709369995957; const float pi = 3.141592653589793238462643383279502884197169; const float n = 1.0003; // refractive index of air const float N = 2.545E25; // number of molecules per unit volume for air at // 288.15K and 1013mb (sea level -45 celsius) const float pn = 0.035; // depolatization factor for standard air // wavelength of used primaries, according to preetham const vec3 lambda = vec3(680E-9, 550E-9, 450E-9); // mie stuff // K coefficient for the primaries const vec3 K = vec3(0.686, 0.678, 0.666); const float v = 4.0; // optical length at zenith for molecules const float rayleighZenithLength = 8.4E3; const float mieZenithLength = 1.25E3; const vec3 up = vec3(0.0, 0.0, 1.0); const float EE = 120.0; const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324; // earth shadow hack const float cutoffAngle = pi/1.95; const float steepness = 1.0; //1.5 vec3 totalRayleigh(vec3 lambda) { return (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn)); } float rayleighPhase(float cosTheta) { return (3.0 / (16.0*pi)) * (1.0 + pow(cosTheta, 2.0)); // return (1.0 / (3.0*pi)) * (1.0 + pow(cosTheta, 2.0)); // return (3.0 / 4.0) * (1.0 + pow(cosTheta, 2.0)); } vec3 totalMie(vec3 lambda, vec3 K, float T) { float c = (0.2 * T ) * 10E-18; return 0.434 * c * pi * pow((2.0 * pi) / lambda, vec3(v - 2.0)) * K; } float hgPhase(float cosTheta, float g) { return (1.0 / (4.0*pi)) * ((1.0 - pow(g, 2.0)) / pow(1.0 - 2.0*g*cosTheta + pow(g, 2.0), 1.5)); } float sunIntensity(float zenithAngleCos) { return EE * max(0.0, 1.0 - exp(-((cutoffAngle - acos(zenithAngleCos))/steepness))); //return (EE * max(0.0, 1.0 - exp(-((cutoffAngle - acos(zenithAngleCos))/steepness))))*.001; //return 5; } float logLuminance(vec3 c) { return log(c.r * 0.2126 + c.g * 0.7152 + c.b * 0.0722); } float A = 0.15; float B = 0.50; float C = 0.10; float D = 0.20; float E = 0.02; float F = 0.30; float W = 1000.0; vec3 Uncharted2Tonemap(vec3 x) { return ((x*(A*x+C*B)+D*E)/(x*(A*x+B)+D*F))-E/F; } void main() { float sunfade = 1.0-clamp(1.0-exp(-(sunPos.z/500.0)),0.0,1.0); reileighCoefficient = reileighCoefficient - (1.0* (1.0-sunfade)); float sunE = sunIntensity(dot(sunDirection, up)); // extinction (absorbtion + out scattering) // rayleigh coefficients vec3 betaR = totalRayleigh(lambda) * reileighCoefficient; // mie coefficients vec3 betaM = totalMie(lambda, K, turbidity) * mieCoefficient; // optical length // cutoff angle at 90 to avoid singularity in next formula. float zenithAngle = acos(max(0.0, dot(up, normalize(wPos - cameraPos)))); float sR = rayleighZenithLength / (cos(zenithAngle) + 0.15 * pow(93.885 - ((zenithAngle * 180.0) / pi), -1.253)); float sM = mieZenithLength / (cos(zenithAngle) + 0.15 * pow(93.885 - ((zenithAngle * 180.0) / pi), -1.253)); // combined extinction factor vec3 Fex = exp(-(betaR * sR + betaM * sM)); // in scattering float cosTheta = dot(normalize(wPos - cameraPos), sunDirection); float rPhase = rayleighPhase(cosTheta*0.5+0.5); vec3 betaRTheta = betaR * rPhase; float mPhase = hgPhase(cosTheta, mieDirectionalG); vec3 betaMTheta = betaM * mPhase; vec3 Lin = pow(sunE * ((betaRTheta + betaMTheta) / (betaR + betaM)) * (1.0 - Fex),vec3(1.5)); Lin *= mix(vec3(1.0),pow(sunE * ((betaRTheta + betaMTheta) / (betaR + betaM)) * Fex,vec3(1.0/2.0)),clamp(pow(1.0-dot(up, sunDirection),5.0),0.0,1.0)); //nightsky vec3 direction = normalize(wPos - cameraPos); float theta = acos(direction.y); // elevation --> y-axis, [-pi/2, pi/2] float phi = atan(direction.z, direction.x); // azimuth --> x-axis [-pi/2, pi/2] vec2 uv = vec2(phi, theta) / vec2(2.0*pi, pi) + vec2(0.5, 0.0); //vec3 L0 = texture2D(skySampler, uv).rgb+0.1 * Fex; vec3 L0 = vec3(0.1) * Fex; // composition + solar disc //if (cosTheta > sunAngularDiameterCos) float sundisk = smoothstep(sunAngularDiameterCos,sunAngularDiameterCos+0.00002,cosTheta); //if (normalize(wPos - cameraPos).z>0.0) L0 += (sunE * 19000.0 * Fex)*sundisk; vec3 whiteScale = 1.0/Uncharted2Tonemap(vec3(W)); vec3 texColor = (Lin+L0); texColor *= 0.04 ; texColor += vec3(0.0,0.001,0.0025)*0.3; float g_fMaxLuminance = 1.0; float fLumScaled = 0.1 / luminance; float fLumCompressed = (fLumScaled * (1.0 + (fLumScaled / (g_fMaxLuminance * g_fMaxLuminance)))) / (1.0 + fLumScaled); float ExposureBias = fLumCompressed; vec3 curr = Uncharted2Tonemap((log2(2.0/pow(luminance,4.0)))*texColor); vec3 color = curr*whiteScale; vec3 retColor = pow(color,vec3(1.0/(1.2+(1.2*sunfade)))); gl_FragColor.rgb = retColor; gl_FragColor.a = 1.0; }